🐣
Reading List
  • Starting point
  • Reference list
  • PhD application guidelines
  • Big Data System
    • Index
      • Architecture
        • Storage
          • Sun's Network File System (NFS)
      • Execution Engine, Resource Negotiator, Schedulers
        • Execution Engines
        • Resource Negotiator
        • Schedulers
      • Machine Learning
      • SQL Framework
      • Stream Processing
      • Graph Processing
      • Potpourri: Hardware, Serverless and Approximation
  • Operating System
    • Index
      • OSTEP
        • Virtualization
          • CPU Abstraction: the Process
          • Interlude: Process API
          • Mechanism: Limited Direct Execution
        • Intro
  • Networking
    • Index
      • CS 294 (Distributed System)
        • Week 1 - Global State and Clocks
          • Distributed Snapshots: Determining Global States of Distributed Systems
          • Time, Clocks, and the Ordering of Events in a Distributed System
        • Weak 5 - Weak Consistency
          • Dynamo: Amazon's Highly Available Key-value Store
          • Replicating Data Consistency Explained Through Baseball
          • Managing update conflicts in Bayou, a weakly connected replicated storage system
      • CS 268 (Adv Network)
        • Intro
        • Internet Architecture
          • Towards an Active Network Architecture
          • The Design Philosophy of the DARPA Internet Protocols
        • Beyond best-effort/Unicast
          • Core Based Trees (CBT)
          • Multicast Routing in Internetworks and Extended LANs
        • Congestion Control
        • SDN
          • ONIX: A Distributed Control Platform for Large-scale Production Networks
          • B4: Experience with a Globally-Deployed Software Defined WAN
          • How SDN will shape networking
          • The Future of Networking, and the Past of Protocols
        • Datacenter Networking
          • Fat tree
          • Jellyfish
        • BGP
          • The Case for Separating Routing from Routers
        • Programmable Network
          • NetCache
          • RMT
        • Datacenter Congestion Control
          • Swift
          • pFabric
        • WAN CC
          • Starvation (Sigcomm 22)
        • P2P
          • Design and Evaluation of IPFS: A Storage Layer for the Decentralized Web
          • The Impact of DHT Routing Geometry on Resilience and Proximity
        • Net SW
          • mTCP
          • The Click modular router
        • NFV
          • Performance Interfaces for Network Functions
          • Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service
        • Ethics
          • On the morals of network research and beyond
          • The collateral damage of internet censorship by DNS injection
          • Encore: Lightweight Measurement of Web Censorship with Cross-Origin Requests
        • Low Latency
          • Aquila: A unified, low-latency fabric for datacenter networks
          • cISP: A Speed-of-Light Internet Service Provider
        • Disaggregation
          • Network Requirements for Resource Disaggregation
        • Tenant Networking
          • Invisinets
          • NetHint: While-Box Networking for Multi-Tenant Data Centers
        • Verification
          • A General Approach to Network Configuration Verification
          • Header Space Analysis: Static Checking for Networks
        • ML
          • SwitchML
          • Fast Distributed Deep Learning over RDMA
      • Computer Networking: A Top-Down Approach
        • Chapter 1. Computer Network and the Internet
          • 1.1 What Is the Internet?
          • 1.2 The Network Edge
          • 1.3 The Network Core
        • Stanford CS144
          • Chapter 1
            • 1.1 A Day in the Life of an Application
            • 1.2 The 4-Layer Internet Model
            • 1.3 The IP Service Model
            • 1.4 A Day in the Life of a Packet
            • 1.6 Layering Principle
            • 1.7 Encapsulation Principle
            • 1.8 Memory layout and Endianness
            • 1.9 IPv4 Addresses
            • 1.10 Longest Prefix Match
            • 1.11 Address Resolution Protocol (ARP)
            • 1.12 The Internet and IP Recap
      • Reading list
        • Elastic hyperparameter tuning on the cloud
        • Rethinking Networking Abstractions for Cloud Tenants
        • Democratizing Cellular Access with AnyCell
        • Dagger: Efficient and Fast RPCs in Cloud Microservices in Near-Memory Reconfigurable NICs
        • Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices
        • Faster and Cheaper Serverless Computing on Harvested Resources
        • Network-accelerated Distributed Machine Learning for Multi-Tenant Settings
        • User-Defined Cloud
        • LegoOS: A Disseminated Distributed OS for Hardware Resource Disaggregation
        • Beyond Jain's Fairness Index: Setting the Bar For The Deployment of Congestion Control Algorithms
        • IncBricks: Toward In-Network Computation with an In-Network Cache
  • Persistence
    • Index
      • Hardware
        • Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling
        • An Empirical Guide to the Behavior and Use of Scalable Persistent Memory
  • Database
    • Index
  • Group
    • WISR Group
      • Group
        • Offloading distributed applications onto smartNICs using iPipe
        • Semeru: A memory-disaggregated managed runtime
      • Cache
        • Index
          • TACK: Improving Wireless Transport Performance by Taming Acknowledgements
          • LHD: Improving Cache Hit Rate by Maximizing Hit Density
          • AdaptSize: Orchestrating the Hot Object Memory Cache in a Content Delivery Network
          • Clustered Bandits
          • Important Sampling
          • Contexual Bandits and Reinforcement Learning
          • Reinforcement Learning for Caching with Space-Time Popularity Dynamics
          • Hyperbolic Caching: Flexible Caching for Web Applications
          • Learning Cache Replacement with CACHEUS
          • Footprint Descriptors: Theory and Practice of Cache Provisioning in a Global CDN
      • Hyperparam Exploration
        • Bayesian optimization in cloud machine learning engine
    • Shivaram's Group
      • Tools
      • Group papers
        • PushdownDB: Accelerating a DBMS using S3 Computation
        • Declarative Machine Learning Systems
        • P3: Distributed Deep Graph Learning at Scale
        • Accelerating Graph Sampling for Graph Machine Learning using GPUs
        • Unicorn: A System for Searching the Social Graph
        • Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed CPU Servers and Serverless
        • Garaph: Efficient GPU-accelerated GraphProcessing on a Single Machine with Balanced Replication
        • MOSAIC: Processing a Trillion-Edge Graph on a Single Machine
        • Fluid: Resource-aware Hyperparameter Tuning Engine
        • Lists
          • Wavelet: Efficient DNN Training with Tick-Tock Scheduling
          • GPU Lifetimes on Titan Supercomputer: Survival Analysis and Reliability
          • ZeRO-Infinity and DeepSpeed: Unlocking unprecedented model scale for deep learning training
          • ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning
          • KungFu: Making Training inDistributed Machine Learning Adaptive
        • Disk ANN
      • Queries Processing
        • Building An Elastic Query Engine on Disaggregated Storage
        • GRIP: Multi-Store Capacity-Optimized High-Performance NN Search
        • Milvus: A Purpose-Built Vector Data Management System
        • Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
        • Billion-scale Approximate Nearest Neighbor Search
        • DiskANN: Fast accurate billion-point nearest neighbor search on a single node
        • KGvec2go - Knowledge Graph Embeddings as a Service
    • Seminar & Talk
      • Berkeley System Seminar
        • RR: Engineering Record and Replay for Deployability
        • Immortal Threads: Multithreaded Event-driven Intermittent Computing on Ultra-Low-Power Microcontroll
      • Berkeley DB Seminar
        • TAOBench: An End-to-End Benchmark for Social Network Workloads
      • PS2
      • Sky Seminar Series
        • Spring 23
          • Next-Generation Optical Networks for Emerging ML Workloads
      • Reading List
        • Confluo: Distributed Monitoring and Diagnosis Stack for High-speed Networks
        • Rearchitecting Linux Storage Stack for µs Latency and High Throughput
        • eBPF: rethinking the linux kernel
        • BPF for Storage: An Exokernel-Inspired Approach
        • High Velocity Kernel File Systems with Bento
        • Incremental Path Towards a Safe OS Kernel
        • Toward Reconfigurable Kernel Datapaths with Learned Optimizations
        • A Vision for Runtime Programmable Networks
        • The Demikernel and the future of kernal-bypass systems
        • Floem: A programming system for NIC-accelerated network applications
        • High Performance Data Center Operating Systems
        • Leveraging Service Meshes as a New Network Layer
        • Automatically Discovering Machine Learning Optimizations
        • Beyond Data and Model Parallelism for Deep Neural Networks
        • IOS: Inter-Operator Scheduler for CNN Acceleration
        • Building An Elastic Query Engine on Disaggregated Storage
        • Sundial: Fault-tolerant Clock Synchronization for Datacenters
        • MIND: In-Network Memory Management for Disaggregated Data Centers
        • Understanding host network stack overheads
        • From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient Functional Containers
        • Redesigning Storage Systems for Future Workloads Hardware and Performance Requirements
        • Are Machine Learning Cloud APIs Used Correctly?
        • Fault-tolerant and transactional stateful serverless workflows
      • Reading Groups
        • Network reading group
          • Recap
          • ML & Networking
            • Video Streaming
              • Overview
              • Reducto: On-Camera Filtering for Resource Efficient Real-Time Video Analytics
              • Learning in situ: a randomized experiment in video streaming
              • SENSEI: Aligning Video Streaming Quality with Dynamic User Sensitivity
              • Neural Adaptive Video Streaming with Pensieve
              • Server-Driven Video Streaming for Deep Learning Inference
            • Congestion Control
              • ABC: A Simple Explicit Congestion Controller for Wireless Networks
              • TCP Congestion Control: A Systems Approach
                • Chapter 1: Introduction
              • A Deep Reinforcement Learning Perspective on Internet Congestion Control
              • Pantheon: the training ground for Internet congestion-control research
            • Other
              • On the Use of ML for Blackbox System Performance Prediction
              • Marauder: Synergized Caching and Prefetching for Low-Risk Mobile App Acceleration
              • Horcrux: Automatic JavaScript Parallelism for Resource-Efficient Web Computation
              • Snicket: Query-Driven Distributed Tracing
            • Workshop
          • Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Priorities
        • DB reading group
          • CliqueMap: Productionizing an RMA-Based Distributed Caching System
          • Hash maps overview
          • Dark Silicon and the End of Multicore Scaling
        • WISR
          • pFabric: Minimal Near-Optimal Datacenter Transport
          • Scaling Distributed Machine Learning within-Network Aggregation
          • WCMP: Weighted Cost Multipathing for Improved Fairness in Data Centers
          • Data center TCP (DCTCP)
      • Wisconsin Seminar
        • Enabling Hyperscale Web Services
        • The Lottery Ticket Hypothesis
        • External Merge Sort for Top-K Queries: Eager input filtering guided by histograms
      • Stanford MLSys Seminar
        • Episode 17
        • Episode 18
  • Cloud Computing
    • Index
      • Cloud Reading Group
        • Owl: Scale and Flexibility in Distribution of Hot Contents
        • RubberBand: cloud-based hyperparameter tuning
  • Distributed System
    • Distributed Systems Lecture Series
      • 1.1 Introduction
  • Conference
    • Index
      • Stanford Graph Learning Workshop
        • Overview of Graph Representation Learning
      • NSDI 2022
      • OSDI 21
        • Graph Embeddings and Neural Networks
        • Data Management
        • Storage
        • Preview
        • Optimizations and Scheduling for ML
          • Oort: Efficient Federated Learning via Guided Participant Selection
          • PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections
      • HotOS 21
        • FlexOS: Making OS Isolation Flexible
      • NSDI 21
        • Distributed System
          • Fault-Tolerant Replication with Pull-Based Consensus in MongoDB
          • Ownership: A Distributed Futures System for Fine-Grained Tasks
          • Caerus: NIMBLE Task Scheduling for Serverless Analytics
          • Ship Computer or Data? Why not both?
          • EPaxos Revisited
          • MilliSort and MilliQuery: Large-Scale Data-Intensive Computing in Milliseconds
        • TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs
        • GAIA: A System for Interactive Analysis on Distributed Graphs Using a High-Level Language
      • CIDR 21
        • Cerebro: A Layered Data Platform for Scalable Deep Learning
        • Magpie: Python at Speed and Scale using Cloud Backends
        • Lightweight Inspection of Data Preprocessingin Native Machine Learning Pipelines
        • Lakehouse: A New Generation of Open Platforms that UnifyData Warehousing and Advanced Analytics
      • MLSys 21
        • Chips and Compilers Symposium
        • Support sparse computations in ML
      • SOSP 21
        • SmartNic
          • LineFS: Efficient SmartNIC offload of a distributed file system with pipeline parallelism
          • Xenic: SmartNIC-accelerated distributed transacitions
        • Graphs
          • Mycelium: Large-Scale Distributed Graph Queries with Differential Privacy
          • dSpace: Composable Abstractions for Smart Spaces
        • Consistency
          • Efficient and Scalable Thread-Safety Violation Detection
          • Understanding and Detecting Software Upgrade Failures in Distributed Systems
        • NVM
          • HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM
        • Learning
          • Bladerunner: Stream Processing at Scale for a Live View of Backend Data Mutations at the Edge
          • Faster and Cheaper Serverless Computing on Harvested Resources
  • Random
    • Reading List
      • Random Thoughts
      • Hesse
      • Anxiety
  • Grad School
    • Index
      • Resources for undergraduate students
Powered by GitBook
On this page

Was this helpful?

  1. Networking
  2. Index
  3. CS 268 (Adv Network)
  4. Ethics

On the morals of network research and beyond

https://conspicuouschatter.wordpress.com/2015/08/20/on-the-morals-of-network-research-and-beyond/

It seems to me that a long chain of moral actors are involved and are or were required for the harm, presented as being the responsibility of the researchers alone, to materialize. By choosing to focus on the researchers, the other moral agents are made invisible — including those that massively profit by the architectures that enable this harm, both monetarily and politically, as well as those doing the actual harm.

There is a difference between a medical researcher administering a drug, that may — through a natural and amoral process — lead to harm, and the case being considered here. At least two other moral actors have to misinterpret information and act, in what I would consider immoral ways, for harm to occur in the setting of the networking research: the surveillance box manufacturers and the state representatives. The full architecture of the web and the internet enables it. I would argue that the bulk of responsibility — and the spotlight of moral outrage — should be on these actors. Placing it squarely on the researchers makes a mockery of the discussion of the ethical implications of our technological artefacts.

Dispel three key fallacies

  • The first one is that things we do not like (some may brand “immoral”) happen because others do not think of the moral implications of their actions. In fact it is entirely possible that they do and decide to act in a manner we do not like none-the-less.

  • The second fallacy is that ethics, and research ethics more specifically, comes down to a “common sense” variant of “do no harm” — and that is that. In fact Ethics, as a philosophical discipline is extremely deep, and there are plenty of entirely legitimate ways to argue that doing harm is perfectly fine.

  • Finally, we should dispel in conversations about research ethics, the myth that morality equals legality. In fact it should probably be our responsibility to highlight the immorality of this state of affairs, before writing public reviews about the immorality of a hypothetical censorship detection system.

  • Thus, I would argue, if one is to make an ethical point relating to the values and risks of technology they have to make it in the larger context of how technology is fielded and used, the politics around it, who has power, who makes the money, who does the torturing and the killing, and why. Technology lives within a big moral picture that a research community has a responsibility to comment on. Focusing moral attention on the microcosm of a specific hypothetical use case — just because it is the closest to our research community — misses the point, perpetuating silently a terrible state of moral affairs.

PreviousEthicsNextThe collateral damage of internet censorship by DNS injection

Last updated 2 years ago

Was this helpful?