🐣
Reading List
  • Starting point
  • Reference list
  • PhD application guidelines
  • Big Data System
    • Index
      • Architecture
        • Storage
          • Sun's Network File System (NFS)
      • Execution Engine, Resource Negotiator, Schedulers
        • Execution Engines
        • Resource Negotiator
        • Schedulers
      • Machine Learning
      • SQL Framework
      • Stream Processing
      • Graph Processing
      • Potpourri: Hardware, Serverless and Approximation
  • Operating System
    • Index
      • OSTEP
        • Virtualization
          • CPU Abstraction: the Process
          • Interlude: Process API
          • Mechanism: Limited Direct Execution
        • Intro
  • Networking
    • Index
      • CS 294 (Distributed System)
        • Week 1 - Global State and Clocks
          • Distributed Snapshots: Determining Global States of Distributed Systems
          • Time, Clocks, and the Ordering of Events in a Distributed System
        • Weak 5 - Weak Consistency
          • Dynamo: Amazon's Highly Available Key-value Store
          • Replicating Data Consistency Explained Through Baseball
          • Managing update conflicts in Bayou, a weakly connected replicated storage system
      • CS 268 (Adv Network)
        • Intro
        • Internet Architecture
          • Towards an Active Network Architecture
          • The Design Philosophy of the DARPA Internet Protocols
        • Beyond best-effort/Unicast
          • Core Based Trees (CBT)
          • Multicast Routing in Internetworks and Extended LANs
        • Congestion Control
        • SDN
          • ONIX: A Distributed Control Platform for Large-scale Production Networks
          • B4: Experience with a Globally-Deployed Software Defined WAN
          • How SDN will shape networking
          • The Future of Networking, and the Past of Protocols
        • Datacenter Networking
          • Fat tree
          • Jellyfish
        • BGP
          • The Case for Separating Routing from Routers
        • Programmable Network
          • NetCache
          • RMT
        • Datacenter Congestion Control
          • Swift
          • pFabric
        • WAN CC
          • Starvation (Sigcomm 22)
        • P2P
          • Design and Evaluation of IPFS: A Storage Layer for the Decentralized Web
          • The Impact of DHT Routing Geometry on Resilience and Proximity
        • Net SW
          • mTCP
          • The Click modular router
        • NFV
          • Performance Interfaces for Network Functions
          • Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service
        • Ethics
          • On the morals of network research and beyond
          • The collateral damage of internet censorship by DNS injection
          • Encore: Lightweight Measurement of Web Censorship with Cross-Origin Requests
        • Low Latency
          • Aquila: A unified, low-latency fabric for datacenter networks
          • cISP: A Speed-of-Light Internet Service Provider
        • Disaggregation
          • Network Requirements for Resource Disaggregation
        • Tenant Networking
          • Invisinets
          • NetHint: While-Box Networking for Multi-Tenant Data Centers
        • Verification
          • A General Approach to Network Configuration Verification
          • Header Space Analysis: Static Checking for Networks
        • ML
          • SwitchML
          • Fast Distributed Deep Learning over RDMA
      • Computer Networking: A Top-Down Approach
        • Chapter 1. Computer Network and the Internet
          • 1.1 What Is the Internet?
          • 1.2 The Network Edge
          • 1.3 The Network Core
        • Stanford CS144
          • Chapter 1
            • 1.1 A Day in the Life of an Application
            • 1.2 The 4-Layer Internet Model
            • 1.3 The IP Service Model
            • 1.4 A Day in the Life of a Packet
            • 1.6 Layering Principle
            • 1.7 Encapsulation Principle
            • 1.8 Memory layout and Endianness
            • 1.9 IPv4 Addresses
            • 1.10 Longest Prefix Match
            • 1.11 Address Resolution Protocol (ARP)
            • 1.12 The Internet and IP Recap
      • Reading list
        • Elastic hyperparameter tuning on the cloud
        • Rethinking Networking Abstractions for Cloud Tenants
        • Democratizing Cellular Access with AnyCell
        • Dagger: Efficient and Fast RPCs in Cloud Microservices in Near-Memory Reconfigurable NICs
        • Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices
        • Faster and Cheaper Serverless Computing on Harvested Resources
        • Network-accelerated Distributed Machine Learning for Multi-Tenant Settings
        • User-Defined Cloud
        • LegoOS: A Disseminated Distributed OS for Hardware Resource Disaggregation
        • Beyond Jain's Fairness Index: Setting the Bar For The Deployment of Congestion Control Algorithms
        • IncBricks: Toward In-Network Computation with an In-Network Cache
  • Persistence
    • Index
      • Hardware
        • Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling
        • An Empirical Guide to the Behavior and Use of Scalable Persistent Memory
  • Database
    • Index
  • Group
    • WISR Group
      • Group
        • Offloading distributed applications onto smartNICs using iPipe
        • Semeru: A memory-disaggregated managed runtime
      • Cache
        • Index
          • TACK: Improving Wireless Transport Performance by Taming Acknowledgements
          • LHD: Improving Cache Hit Rate by Maximizing Hit Density
          • AdaptSize: Orchestrating the Hot Object Memory Cache in a Content Delivery Network
          • Clustered Bandits
          • Important Sampling
          • Contexual Bandits and Reinforcement Learning
          • Reinforcement Learning for Caching with Space-Time Popularity Dynamics
          • Hyperbolic Caching: Flexible Caching for Web Applications
          • Learning Cache Replacement with CACHEUS
          • Footprint Descriptors: Theory and Practice of Cache Provisioning in a Global CDN
      • Hyperparam Exploration
        • Bayesian optimization in cloud machine learning engine
    • Shivaram's Group
      • Tools
      • Group papers
        • PushdownDB: Accelerating a DBMS using S3 Computation
        • Declarative Machine Learning Systems
        • P3: Distributed Deep Graph Learning at Scale
        • Accelerating Graph Sampling for Graph Machine Learning using GPUs
        • Unicorn: A System for Searching the Social Graph
        • Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed CPU Servers and Serverless
        • Garaph: Efficient GPU-accelerated GraphProcessing on a Single Machine with Balanced Replication
        • MOSAIC: Processing a Trillion-Edge Graph on a Single Machine
        • Fluid: Resource-aware Hyperparameter Tuning Engine
        • Lists
          • Wavelet: Efficient DNN Training with Tick-Tock Scheduling
          • GPU Lifetimes on Titan Supercomputer: Survival Analysis and Reliability
          • ZeRO-Infinity and DeepSpeed: Unlocking unprecedented model scale for deep learning training
          • ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning
          • KungFu: Making Training inDistributed Machine Learning Adaptive
        • Disk ANN
      • Queries Processing
        • Building An Elastic Query Engine on Disaggregated Storage
        • GRIP: Multi-Store Capacity-Optimized High-Performance NN Search
        • Milvus: A Purpose-Built Vector Data Management System
        • Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
        • Billion-scale Approximate Nearest Neighbor Search
        • DiskANN: Fast accurate billion-point nearest neighbor search on a single node
        • KGvec2go - Knowledge Graph Embeddings as a Service
    • Seminar & Talk
      • Berkeley System Seminar
        • RR: Engineering Record and Replay for Deployability
        • Immortal Threads: Multithreaded Event-driven Intermittent Computing on Ultra-Low-Power Microcontroll
      • Berkeley DB Seminar
        • TAOBench: An End-to-End Benchmark for Social Network Workloads
      • PS2
      • Sky Seminar Series
        • Spring 23
          • Next-Generation Optical Networks for Emerging ML Workloads
      • Reading List
        • Confluo: Distributed Monitoring and Diagnosis Stack for High-speed Networks
        • Rearchitecting Linux Storage Stack for µs Latency and High Throughput
        • eBPF: rethinking the linux kernel
        • BPF for Storage: An Exokernel-Inspired Approach
        • High Velocity Kernel File Systems with Bento
        • Incremental Path Towards a Safe OS Kernel
        • Toward Reconfigurable Kernel Datapaths with Learned Optimizations
        • A Vision for Runtime Programmable Networks
        • The Demikernel and the future of kernal-bypass systems
        • Floem: A programming system for NIC-accelerated network applications
        • High Performance Data Center Operating Systems
        • Leveraging Service Meshes as a New Network Layer
        • Automatically Discovering Machine Learning Optimizations
        • Beyond Data and Model Parallelism for Deep Neural Networks
        • IOS: Inter-Operator Scheduler for CNN Acceleration
        • Building An Elastic Query Engine on Disaggregated Storage
        • Sundial: Fault-tolerant Clock Synchronization for Datacenters
        • MIND: In-Network Memory Management for Disaggregated Data Centers
        • Understanding host network stack overheads
        • From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient Functional Containers
        • Redesigning Storage Systems for Future Workloads Hardware and Performance Requirements
        • Are Machine Learning Cloud APIs Used Correctly?
        • Fault-tolerant and transactional stateful serverless workflows
      • Reading Groups
        • Network reading group
          • Recap
          • ML & Networking
            • Video Streaming
              • Overview
              • Reducto: On-Camera Filtering for Resource Efficient Real-Time Video Analytics
              • Learning in situ: a randomized experiment in video streaming
              • SENSEI: Aligning Video Streaming Quality with Dynamic User Sensitivity
              • Neural Adaptive Video Streaming with Pensieve
              • Server-Driven Video Streaming for Deep Learning Inference
            • Congestion Control
              • ABC: A Simple Explicit Congestion Controller for Wireless Networks
              • TCP Congestion Control: A Systems Approach
                • Chapter 1: Introduction
              • A Deep Reinforcement Learning Perspective on Internet Congestion Control
              • Pantheon: the training ground for Internet congestion-control research
            • Other
              • On the Use of ML for Blackbox System Performance Prediction
              • Marauder: Synergized Caching and Prefetching for Low-Risk Mobile App Acceleration
              • Horcrux: Automatic JavaScript Parallelism for Resource-Efficient Web Computation
              • Snicket: Query-Driven Distributed Tracing
            • Workshop
          • Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Priorities
        • DB reading group
          • CliqueMap: Productionizing an RMA-Based Distributed Caching System
          • Hash maps overview
          • Dark Silicon and the End of Multicore Scaling
        • WISR
          • pFabric: Minimal Near-Optimal Datacenter Transport
          • Scaling Distributed Machine Learning within-Network Aggregation
          • WCMP: Weighted Cost Multipathing for Improved Fairness in Data Centers
          • Data center TCP (DCTCP)
      • Wisconsin Seminar
        • Enabling Hyperscale Web Services
        • The Lottery Ticket Hypothesis
        • External Merge Sort for Top-K Queries: Eager input filtering guided by histograms
      • Stanford MLSys Seminar
        • Episode 17
        • Episode 18
  • Cloud Computing
    • Index
      • Cloud Reading Group
        • Owl: Scale and Flexibility in Distribution of Hot Contents
        • RubberBand: cloud-based hyperparameter tuning
  • Distributed System
    • Distributed Systems Lecture Series
      • 1.1 Introduction
  • Conference
    • Index
      • Stanford Graph Learning Workshop
        • Overview of Graph Representation Learning
      • NSDI 2022
      • OSDI 21
        • Graph Embeddings and Neural Networks
        • Data Management
        • Storage
        • Preview
        • Optimizations and Scheduling for ML
          • Oort: Efficient Federated Learning via Guided Participant Selection
          • PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections
      • HotOS 21
        • FlexOS: Making OS Isolation Flexible
      • NSDI 21
        • Distributed System
          • Fault-Tolerant Replication with Pull-Based Consensus in MongoDB
          • Ownership: A Distributed Futures System for Fine-Grained Tasks
          • Caerus: NIMBLE Task Scheduling for Serverless Analytics
          • Ship Computer or Data? Why not both?
          • EPaxos Revisited
          • MilliSort and MilliQuery: Large-Scale Data-Intensive Computing in Milliseconds
        • TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs
        • GAIA: A System for Interactive Analysis on Distributed Graphs Using a High-Level Language
      • CIDR 21
        • Cerebro: A Layered Data Platform for Scalable Deep Learning
        • Magpie: Python at Speed and Scale using Cloud Backends
        • Lightweight Inspection of Data Preprocessingin Native Machine Learning Pipelines
        • Lakehouse: A New Generation of Open Platforms that UnifyData Warehousing and Advanced Analytics
      • MLSys 21
        • Chips and Compilers Symposium
        • Support sparse computations in ML
      • SOSP 21
        • SmartNic
          • LineFS: Efficient SmartNIC offload of a distributed file system with pipeline parallelism
          • Xenic: SmartNIC-accelerated distributed transacitions
        • Graphs
          • Mycelium: Large-Scale Distributed Graph Queries with Differential Privacy
          • dSpace: Composable Abstractions for Smart Spaces
        • Consistency
          • Efficient and Scalable Thread-Safety Violation Detection
          • Understanding and Detecting Software Upgrade Failures in Distributed Systems
        • NVM
          • HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM
        • Learning
          • Bladerunner: Stream Processing at Scale for a Live View of Backend Data Mutations at the Edge
          • Faster and Cheaper Serverless Computing on Harvested Resources
  • Random
    • Reading List
      • Random Thoughts
      • Hesse
      • Anxiety
  • Grad School
    • Index
      • Resources for undergraduate students
Powered by GitBook
On this page
  • Main Insight
  • Some reads

Was this helpful?

  1. Networking
  2. Index
  3. CS 294 (Distributed System)
  4. Weak 5 - Weak Consistency

Managing update conflicts in Bayou, a weakly connected replicated storage system

https://people.cs.umass.edu/~mcorner/courses/691M/papers/terry.pdf

Main Insight

  • Bayou is a replicated, weakly consistent storage system designed for a mobile computing environment with less than ideal network connectivity

    • Model: read and write to any replica without the need for explicit coordination with other replicas

    • Exploit domain-specific knowledge to achieve automatic conflict resolution at the granularity of individual update operations

Target applications

  • Non-real-time collaborative applications, such as shared calendar, mail, and bibliographic databases

Basic system models

  • Data collection: replicated in full at a number of servers

  • Client: applications running as clients interact with the servers through Bayou API

  • Two basic operations: read and write

    • Read: queries over a data collection

    • Write: insert, modify, and delete a number of data items in a collection

      • Contains a typical FS write or DB update, and carries info that let server decide if there is a conflict, how to fix it

      • Contains a globally unique writeID

  • Weakly consistent replication model: read-any / write-any style of access

  • Session guarantees: switching between servers is possible, reduce client-observed inconsistencies when accessing different servers

    • Basically this ensures that the effects of any writes made within a session are visible to reads within that session

  • Storage system at each Bayou server

    • Ordered log of writes

    • Data resulting from execution of these writes

    • Servers propagate writes among themselves during pair-wise contacts, called anti-entropy sessions (i.e. servers agree on set of Bayou writes they have seen, and the order in which to perform them)

    • Will eventually converge (by epidemic algorithms), but rate depends on network connectivity, frequency of anti-entropy, and policies by which servers select anti-entropy partners

Conflict detection and resolution

  • Accomodate application semantics

    • Goal: support application-specific notion of conflict, and policy for resolving conflicts

    • Two mechanisms (general and flexible)

      • Dependency checks

        • Each write operation includes a dependency check consisting of an application-supplied query and its expected result; it is the pre-condiction for performing the update

          • [Q: wouldn't this result in a very large overhead? sometimes not all applications know what they want; are there classifications on application tasks, or auto-generation on the dependencies?]

        • Can be used for detecting W-W conflicts and R-W conflicts

        • Can enforce arbitrary, multi-item integrity constraints on the data

      • Merge procedures

        • Once a conflict is detected, a merge procedure is run by Bayou server in attempt for resolving conflict

        • Logic written by application programmers

        • With each write operation: detect, merge, apply revised updates are performed atomically at each server

          • [Q: again, the question of overhead in terms of having to specifying this per write operation?]

        • When automatic resolution is not possible, the merge procedure will still run to completion and produce a revised update that log the detected conflicts

        • Allow replicas to always remain accessible (continue to read previously written data and issue new writes)

Replica Consistency

  • Eventual consistency

    • All servers eventually receive all writes via pair-wise anti-entropy process and two servers holding the same set of writes will have the same data contents

  • Two features

    • Writes are performed in the same, well-defined order at all servers

      • As write is accpeted by Bayou server, it is deemed tentative

      • Tentative writes are ordered according to timestamps assigned to them by their accepting servers

        • Timestamp: monotonically increasing at each server

        • Logical clocks to timestamp new writes

          • Generally synchronized with its real-time system clock, special circumstances which it advances its logical clock when writes are received during anti-entropy

      • Eventually each write is committed

        • committed writes are ordered according to the times at which they commit and before any tentative writes

    • Conflict detection and merge procedures are deterministic so that servers resolve the same conflicts in the same manner

      • Maintains a log of all write operations, sorted by committed / tentative timestamps

      • Merge procedures produce consistent update, fail deterministically

Write Stability and Commitment

  • A write is said to be stable at a server when it has been executed for the last time by that server

    • When the set of Writes that procede it in the server's Write log is fixed (i.e. the server has already received and executed any Writes that could possibly be ordered before the given Write)

  • API for inquiring about the stability of a specific Write

  • How to detect stable on the server?

    • A1: when it has a lower timestamp than all servers' clocks

      • Con: a server that remains disconnected can prevent Writes from stablizing

    • Bayou: commit procedure

      • A write becomes stable when it explicitly commits

      • Primary commit scheme: one server designated as the primary takes responsibility for committing updates

        • Which Writes have committed + in which order they were committed are propagated to other servers during anti-entropy

        • Better than 2-phase-commit: it alleviates the need to gather a majority quorum of servers

      • Readily accomodate primary unavailability

      • Cannot ensure that order in which the writes are committed is consistent with the tentative order indicated by their timestamps

Storage System Implementation Issues

  • Space-efficient write logging, efficient undo/redo of write operations, separate views of committed and tentative data, support for server-to-server anti-entropy

  • Main components: the Write Log, the Tuple Store, and the Undo Log

  • Security

    • Execute each merge procedure within a secure environment in which the only allowable external actions are reading and writing data using the access crednetials of the user who submitted the conflicting Write

Some reads

  • How does Bayou agree on the total order of committed writes?

    • One designated "primary replica"

    • It marks each write it receives with a permanent CSN (commit sequence number), that write is cimmitted, so a complete timestamp is <CSN, local-TS, node-id>

    • CSN notifications propagate with updates using the anti-entropy algorithm

    • The CSNs define a total order for committed writes

      • All nodes will eventually agree on it

      • Uncommitted writes come after all committed writes (infinite CSN)

  • Can primary replica choose any order to commit?

    • Total order must preserve order of writes originated at each node, but not necessarily order among different nodes' writes

PreviousReplicating Data Consistency Explained Through BaseballNextCS 268 (Adv Network)

Last updated 2 years ago

Was this helpful?

Ref:

https://www.scs.stanford.edu/nyu/01fa/notes/l16d.txt