🐣
Reading List
  • Starting point
  • Reference list
  • PhD application guidelines
  • Big Data System
    • Index
      • Architecture
        • Storage
          • Sun's Network File System (NFS)
      • Execution Engine, Resource Negotiator, Schedulers
        • Execution Engines
        • Resource Negotiator
        • Schedulers
      • Machine Learning
      • SQL Framework
      • Stream Processing
      • Graph Processing
      • Potpourri: Hardware, Serverless and Approximation
  • Operating System
    • Index
      • OSTEP
        • Virtualization
          • CPU Abstraction: the Process
          • Interlude: Process API
          • Mechanism: Limited Direct Execution
        • Intro
  • Networking
    • Index
      • CS 294 (Distributed System)
        • Week 1 - Global State and Clocks
          • Distributed Snapshots: Determining Global States of Distributed Systems
          • Time, Clocks, and the Ordering of Events in a Distributed System
        • Weak 5 - Weak Consistency
          • Dynamo: Amazon's Highly Available Key-value Store
          • Replicating Data Consistency Explained Through Baseball
          • Managing update conflicts in Bayou, a weakly connected replicated storage system
      • CS 268 (Adv Network)
        • Intro
        • Internet Architecture
          • Towards an Active Network Architecture
          • The Design Philosophy of the DARPA Internet Protocols
        • Beyond best-effort/Unicast
          • Core Based Trees (CBT)
          • Multicast Routing in Internetworks and Extended LANs
        • Congestion Control
        • SDN
          • ONIX: A Distributed Control Platform for Large-scale Production Networks
          • B4: Experience with a Globally-Deployed Software Defined WAN
          • How SDN will shape networking
          • The Future of Networking, and the Past of Protocols
        • Datacenter Networking
          • Fat tree
          • Jellyfish
        • BGP
          • The Case for Separating Routing from Routers
        • Programmable Network
          • NetCache
          • RMT
        • Datacenter Congestion Control
          • Swift
          • pFabric
        • WAN CC
          • Starvation (Sigcomm 22)
        • P2P
          • Design and Evaluation of IPFS: A Storage Layer for the Decentralized Web
          • The Impact of DHT Routing Geometry on Resilience and Proximity
        • Net SW
          • mTCP
          • The Click modular router
        • NFV
          • Performance Interfaces for Network Functions
          • Making Middleboxes Someone Else's Problem: Network Processing as a Cloud Service
        • Ethics
          • On the morals of network research and beyond
          • The collateral damage of internet censorship by DNS injection
          • Encore: Lightweight Measurement of Web Censorship with Cross-Origin Requests
        • Low Latency
          • Aquila: A unified, low-latency fabric for datacenter networks
          • cISP: A Speed-of-Light Internet Service Provider
        • Disaggregation
          • Network Requirements for Resource Disaggregation
        • Tenant Networking
          • Invisinets
          • NetHint: While-Box Networking for Multi-Tenant Data Centers
        • Verification
          • A General Approach to Network Configuration Verification
          • Header Space Analysis: Static Checking for Networks
        • ML
          • SwitchML
          • Fast Distributed Deep Learning over RDMA
      • Computer Networking: A Top-Down Approach
        • Chapter 1. Computer Network and the Internet
          • 1.1 What Is the Internet?
          • 1.2 The Network Edge
          • 1.3 The Network Core
        • Stanford CS144
          • Chapter 1
            • 1.1 A Day in the Life of an Application
            • 1.2 The 4-Layer Internet Model
            • 1.3 The IP Service Model
            • 1.4 A Day in the Life of a Packet
            • 1.6 Layering Principle
            • 1.7 Encapsulation Principle
            • 1.8 Memory layout and Endianness
            • 1.9 IPv4 Addresses
            • 1.10 Longest Prefix Match
            • 1.11 Address Resolution Protocol (ARP)
            • 1.12 The Internet and IP Recap
      • Reading list
        • Elastic hyperparameter tuning on the cloud
        • Rethinking Networking Abstractions for Cloud Tenants
        • Democratizing Cellular Access with AnyCell
        • Dagger: Efficient and Fast RPCs in Cloud Microservices in Near-Memory Reconfigurable NICs
        • Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices
        • Faster and Cheaper Serverless Computing on Harvested Resources
        • Network-accelerated Distributed Machine Learning for Multi-Tenant Settings
        • User-Defined Cloud
        • LegoOS: A Disseminated Distributed OS for Hardware Resource Disaggregation
        • Beyond Jain's Fairness Index: Setting the Bar For The Deployment of Congestion Control Algorithms
        • IncBricks: Toward In-Network Computation with an In-Network Cache
  • Persistence
    • Index
      • Hardware
        • Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling
        • An Empirical Guide to the Behavior and Use of Scalable Persistent Memory
  • Database
    • Index
  • Group
    • WISR Group
      • Group
        • Offloading distributed applications onto smartNICs using iPipe
        • Semeru: A memory-disaggregated managed runtime
      • Cache
        • Index
          • TACK: Improving Wireless Transport Performance by Taming Acknowledgements
          • LHD: Improving Cache Hit Rate by Maximizing Hit Density
          • AdaptSize: Orchestrating the Hot Object Memory Cache in a Content Delivery Network
          • Clustered Bandits
          • Important Sampling
          • Contexual Bandits and Reinforcement Learning
          • Reinforcement Learning for Caching with Space-Time Popularity Dynamics
          • Hyperbolic Caching: Flexible Caching for Web Applications
          • Learning Cache Replacement with CACHEUS
          • Footprint Descriptors: Theory and Practice of Cache Provisioning in a Global CDN
      • Hyperparam Exploration
        • Bayesian optimization in cloud machine learning engine
    • Shivaram's Group
      • Tools
      • Group papers
        • PushdownDB: Accelerating a DBMS using S3 Computation
        • Declarative Machine Learning Systems
        • P3: Distributed Deep Graph Learning at Scale
        • Accelerating Graph Sampling for Graph Machine Learning using GPUs
        • Unicorn: A System for Searching the Social Graph
        • Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed CPU Servers and Serverless
        • Garaph: Efficient GPU-accelerated GraphProcessing on a Single Machine with Balanced Replication
        • MOSAIC: Processing a Trillion-Edge Graph on a Single Machine
        • Fluid: Resource-aware Hyperparameter Tuning Engine
        • Lists
          • Wavelet: Efficient DNN Training with Tick-Tock Scheduling
          • GPU Lifetimes on Titan Supercomputer: Survival Analysis and Reliability
          • ZeRO-Infinity and DeepSpeed: Unlocking unprecedented model scale for deep learning training
          • ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale Deep Learning
          • KungFu: Making Training inDistributed Machine Learning Adaptive
        • Disk ANN
      • Queries Processing
        • Building An Elastic Query Engine on Disaggregated Storage
        • GRIP: Multi-Store Capacity-Optimized High-Performance NN Search
        • Milvus: A Purpose-Built Vector Data Management System
        • Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
        • Billion-scale Approximate Nearest Neighbor Search
        • DiskANN: Fast accurate billion-point nearest neighbor search on a single node
        • KGvec2go - Knowledge Graph Embeddings as a Service
    • Seminar & Talk
      • Berkeley System Seminar
        • RR: Engineering Record and Replay for Deployability
        • Immortal Threads: Multithreaded Event-driven Intermittent Computing on Ultra-Low-Power Microcontroll
      • Berkeley DB Seminar
        • TAOBench: An End-to-End Benchmark for Social Network Workloads
      • PS2
      • Sky Seminar Series
        • Spring 23
          • Next-Generation Optical Networks for Emerging ML Workloads
      • Reading List
        • Confluo: Distributed Monitoring and Diagnosis Stack for High-speed Networks
        • Rearchitecting Linux Storage Stack for µs Latency and High Throughput
        • eBPF: rethinking the linux kernel
        • BPF for Storage: An Exokernel-Inspired Approach
        • High Velocity Kernel File Systems with Bento
        • Incremental Path Towards a Safe OS Kernel
        • Toward Reconfigurable Kernel Datapaths with Learned Optimizations
        • A Vision for Runtime Programmable Networks
        • The Demikernel and the future of kernal-bypass systems
        • Floem: A programming system for NIC-accelerated network applications
        • High Performance Data Center Operating Systems
        • Leveraging Service Meshes as a New Network Layer
        • Automatically Discovering Machine Learning Optimizations
        • Beyond Data and Model Parallelism for Deep Neural Networks
        • IOS: Inter-Operator Scheduler for CNN Acceleration
        • Building An Elastic Query Engine on Disaggregated Storage
        • Sundial: Fault-tolerant Clock Synchronization for Datacenters
        • MIND: In-Network Memory Management for Disaggregated Data Centers
        • Understanding host network stack overheads
        • From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient Functional Containers
        • Redesigning Storage Systems for Future Workloads Hardware and Performance Requirements
        • Are Machine Learning Cloud APIs Used Correctly?
        • Fault-tolerant and transactional stateful serverless workflows
      • Reading Groups
        • Network reading group
          • Recap
          • ML & Networking
            • Video Streaming
              • Overview
              • Reducto: On-Camera Filtering for Resource Efficient Real-Time Video Analytics
              • Learning in situ: a randomized experiment in video streaming
              • SENSEI: Aligning Video Streaming Quality with Dynamic User Sensitivity
              • Neural Adaptive Video Streaming with Pensieve
              • Server-Driven Video Streaming for Deep Learning Inference
            • Congestion Control
              • ABC: A Simple Explicit Congestion Controller for Wireless Networks
              • TCP Congestion Control: A Systems Approach
                • Chapter 1: Introduction
              • A Deep Reinforcement Learning Perspective on Internet Congestion Control
              • Pantheon: the training ground for Internet congestion-control research
            • Other
              • On the Use of ML for Blackbox System Performance Prediction
              • Marauder: Synergized Caching and Prefetching for Low-Risk Mobile App Acceleration
              • Horcrux: Automatic JavaScript Parallelism for Resource-Efficient Web Computation
              • Snicket: Query-Driven Distributed Tracing
            • Workshop
          • Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Priorities
        • DB reading group
          • CliqueMap: Productionizing an RMA-Based Distributed Caching System
          • Hash maps overview
          • Dark Silicon and the End of Multicore Scaling
        • WISR
          • pFabric: Minimal Near-Optimal Datacenter Transport
          • Scaling Distributed Machine Learning within-Network Aggregation
          • WCMP: Weighted Cost Multipathing for Improved Fairness in Data Centers
          • Data center TCP (DCTCP)
      • Wisconsin Seminar
        • Enabling Hyperscale Web Services
        • The Lottery Ticket Hypothesis
        • External Merge Sort for Top-K Queries: Eager input filtering guided by histograms
      • Stanford MLSys Seminar
        • Episode 17
        • Episode 18
  • Cloud Computing
    • Index
      • Cloud Reading Group
        • Owl: Scale and Flexibility in Distribution of Hot Contents
        • RubberBand: cloud-based hyperparameter tuning
  • Distributed System
    • Distributed Systems Lecture Series
      • 1.1 Introduction
  • Conference
    • Index
      • Stanford Graph Learning Workshop
        • Overview of Graph Representation Learning
      • NSDI 2022
      • OSDI 21
        • Graph Embeddings and Neural Networks
        • Data Management
        • Storage
        • Preview
        • Optimizations and Scheduling for ML
          • Oort: Efficient Federated Learning via Guided Participant Selection
          • PET: Optimizing Tensor Programs with Partially Equivalent Transformations and Automated Corrections
      • HotOS 21
        • FlexOS: Making OS Isolation Flexible
      • NSDI 21
        • Distributed System
          • Fault-Tolerant Replication with Pull-Based Consensus in MongoDB
          • Ownership: A Distributed Futures System for Fine-Grained Tasks
          • Caerus: NIMBLE Task Scheduling for Serverless Analytics
          • Ship Computer or Data? Why not both?
          • EPaxos Revisited
          • MilliSort and MilliQuery: Large-Scale Data-Intensive Computing in Milliseconds
        • TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs
        • GAIA: A System for Interactive Analysis on Distributed Graphs Using a High-Level Language
      • CIDR 21
        • Cerebro: A Layered Data Platform for Scalable Deep Learning
        • Magpie: Python at Speed and Scale using Cloud Backends
        • Lightweight Inspection of Data Preprocessingin Native Machine Learning Pipelines
        • Lakehouse: A New Generation of Open Platforms that UnifyData Warehousing and Advanced Analytics
      • MLSys 21
        • Chips and Compilers Symposium
        • Support sparse computations in ML
      • SOSP 21
        • SmartNic
          • LineFS: Efficient SmartNIC offload of a distributed file system with pipeline parallelism
          • Xenic: SmartNIC-accelerated distributed transacitions
        • Graphs
          • Mycelium: Large-Scale Distributed Graph Queries with Differential Privacy
          • dSpace: Composable Abstractions for Smart Spaces
        • Consistency
          • Efficient and Scalable Thread-Safety Violation Detection
          • Understanding and Detecting Software Upgrade Failures in Distributed Systems
        • NVM
          • HeMem: Scalable Tiered Memory Management for Big Data Applications and Real NVM
        • Learning
          • Bladerunner: Stream Processing at Scale for a Live View of Backend Data Mutations at the Edge
          • Faster and Cheaper Serverless Computing on Harvested Resources
  • Random
    • Reading List
      • Random Thoughts
      • Hesse
      • Anxiety
  • Grad School
    • Index
      • Resources for undergraduate students
Powered by GitBook
On this page
  • Abstract
  • Introduction
  • Query2Box
  • Experiment
  • Take-away

Was this helpful?

  1. Group
  2. Shivaram's Group
  3. Queries Processing

Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings

https://arxiv.org/abs/2002.05969

Abstract

  • Task: answering complex logical queries on large-scale incomplete knowledge graphs (KGs)

  • Motivation:

    • Prior work models queries as single points in the vector space: problematic because a complex query represents a large set of its answer entities

    • Prior work only handles queries with conjunctions and existential quantifiers, not disjunctions

  • Key insight: embed queries as boxes --> a set of points inside the box corresponds to a set of answer entities of the query

  • Able to: handles queries that use conjunctions, existential quantifiers, and logical disjunctions in massive and incomplete KGs

Introduction

  • First-order logical queries: can be represented as DAGs

    • Con

      • Limited scalability: computational complexity of subgraph matching (exp in query size)

      • Correctness: cannot correctly answer queries with missing relations

        • Imputation: make the graph denser, and limit scalability

  • Alternative: embed logical queries and KG entities to low-dim vector space

    • Pro

      • Robustly handle missing relations

      • Orders of magnitude faster

    • Con: single point in vector space

      • Answer logical query requires modeling a set of active entities while traversing the KG

      • Unnatural to define logical operators of points in the vector space

      • Can only handle conjunctive queries

  • This paper: embedding-based framework for reasoning over KGs that is capable of handling EPFO logical queries in scalable manner

    • Model a set of entities using a closed region instead of a single point (i.e. box)

      • Box naturally model sets of entities they enclose

      • Logical operators (e.g. set intersection) can be similarly defined over boxes

      • Operations are closed

    • EPFO --> DNF

      • Represent any EPFO query as a set of individual boxes, where each box is obtained for each conjunctive query in the DNF

      • Return NN to any of the boxes as the answers to the query

      • Then take the union of the answer entities

Query2Box

  • Objective function

    • Learn embeddings of entities in the KG

    • Learn parameterized geometric logical operators over boxes

  • Query answer process: arbitrary EPFO query q

    • Identify its computation graph

    • embed the query by executing a set of geometric operators over boxes

    • entities that are enclosed in the final box embedding are returned as answers to the query

3.1 Knowledge graphs and conjunctive queries

  • Conjunctive queries: subclass of first-order logical queries that uses existential and conjunction operations

  • Dependency graph

    • Nodes: variable or non-variable entities in q

    • Edges: relations in q

    • In order for the query to be valid, the corresponding dependency graph needs to be a DAG

      • Anchor entities: source nodes

      • Query target: unique sink node

  • Computation graph: projection, intersection

3.2 Reasoning over sets of entities using box embeddings

  • Intuitions: decompose complex query into a sequence of logical operations, and then execute these operations in the vector space

    • This way we will obtain the embedding of the query

    • Answers to the query will be entities that are enclosed in the final query embedding box

  • Two methodological advances

    • The use of box embeddings to model and reason over set of entities

    • How to tractably handle disjunction operators

  • Box embeddings

    • p = (Cen(p), Off(p))

      • Cen(p) is the center of the box

      • Off(p) is the positive offset of the box, modeling the size of the box

    • Initial boxes for source nodes: (v, 0), where v is the anchor entity vector and 0 is a d-dim all-zero vector

    • geometric projection operator

      • relation embedding: r = (Cen(r), Off(r))

      • Given input box embedding p, projection is modeled by p + r: sum the centers and sum the offsets

        • translated center, larger offset

    • geometric intersection operator

      • p(inter) = (Cen(p(inter)), Off(p(inter)))

      • Calculated by: performing attention over the box centers, and shrinking the box offset using the sigmoid function

    • Entity-to-box distance

    • Training objective

      • Learn entity embeddings and geometric projection and intersection operators

3.3 Tractable handling of disjunction using disjunctive normal form

  • Can define union, but union operations over boxes is not closed

  • Key idea: transform a given EPFO query into a Disjunctive Normal Form (DNF) (i.e. disjunction of conjunctive queries, and union operations only appear at the last steps)

  • Transformation to DNF

    • See the paper (calculate computation graphs and combine)

  • Aggregation

    • Distance between the given EPFO query q and an entity v

      • N > 1: minimum distance to the closest box as the distance to an entity

  • Computational complexity

    • Complexity of answering an EPFO query = answering the N conjunctive queries

      • N is not large, and the computation can be parallelized

      • Answering each conjunctive query: execute a sequence of box operations, and then perform a range search

Experiment

KGs and Query Generation

  • E.x. FB15k, FB15k-237, NELL995

  • 'p': projection

  • 'i': intersection

  • 'u': union

Take-away

  • Workloads

    • Originally: more like structured embeddings, model individual entities and study pairwise relations

    • Here (box embeddings): model sets of entities and reason over those sets

PreviousMilvus: A Purpose-Built Vector Data Management SystemNextBillion-scale Approximate Nearest Neighbor Search

Last updated 3 years ago

Was this helpful?

Conjunctive queries: Where did Canadian citizens with Turing Award Graduate?
Entity to box distance
Entity to box distance (2)
Query structures considered in the experiments